Commercial External Payload Hosting Platforms on the International Space Station for Space Research

Airbus Defense and Space in cooperation with Teledyne Brown Engineering

Dr. Christian Steimle, Uwe Pape, Airbus DS GmbH, Space Systems, Bremen, Germany
Ron Dunklee, Airbus DS Space Systems, Inc., Houston
Bill Corley, Dr. John Horack, Teledyne Brown Engineering, Houston / Huntsville

12 November 2015
Commercial External Payload Hosting Platforms on the International Space Station for Space Research

Motivation

- Access to LEO with high technical and schedule reliability
- Short mission lead times of 12 to 18 months
- Turnkey mission prices
- End-to-end service concept
- Testing of concepts for on-orbit assembly
- Use of ISS robotic systems
- ISS as laboratory in space
- Access to ISS with low TRL
- Capability to return payload back to Earth
- Exposure of payload to space environment
- Capability to return payload back to Earth
- Power available for testing of low thrust electric propulsion systems
- Unconstrained Nadir view from the platform
- Stabilization and pointing with the Teledyne Brown MUSES facility
- Near-real time data capability of ISS
- Unconstrained Zenith view from the platform
- Stabilization and pointing with the Teledyne Brown MUSES facility
- Near-real time data capability of ISS
NanoRacks External Platform

Mission end-to-end service for the launch, hosting and operation of small external payloads on ISS starting with Mission #1 early 2016.

<table>
<thead>
<tr>
<th>Customer</th>
<th>Payload</th>
<th>Mission scope</th>
</tr>
</thead>
</table>
| Yosemite Space | Gumstix™ | - Principal investigator Kathleen Morse, Ph.D.
- Space-based radiation studies to investigate the feasibility of the Gumstix Computer On Module (COM) technology for use in non-critical computationally intensive space applications |
| Florida Institute of Technology | Charge Injection Device (CID) Sensors for Space-Based Extreme Contrast Ratio Imaging | - Principal investigator Daniel Batcheldor, Ph.D.
- Space-based test of an innovative and novel Charge Injection Device (CID) imager technology in the space environment |
| A-76 Technologies | Characterization of A-76 Corrosion Inhibitors in the Space Environment | - Characterize effectiveness of A-76 corrosion inhibitors and lubricants for metals in the space environment |
| Honeywell and Morehead State University, Space Sciences Center | TRL7 Validation of Dependable Multiprocessor (DM) Technology | - Principal investigators John Sampson, Ph.D., Benjamin Malphrus, Ph.D.
- Benchmark performance and radiation-induced computational errors of DM Technology while conducting computationally intensive processing in the space environment |
| Arquimea Ingeniería, S.L.U. (Spain) | REsettable Hold-Down and Release ACTuator (REACT) | - EU Horizon 2020 funded project with multiple European project partners (Arquimea Ingeniería, S.L.U., EADS CASA Espacio, Surrey Satellite Technology Ltd., AVS, Universidad del País Vasco, ESR Technology Ltd., Spacetech GmbH)
- In-orbit test of SMA-based actuators |
Bartolomeo Concept

- Limited availability of external payload sites on ISS after 2017, but demand exists until ISS EoL
- Versatile external payload hosting facility meeting the demand of different types of customers at the same time
- Access to improved visibility of Earth and space on ISS Columbus module
- Attract new users outside classic microgravity / space research to ISS, new use cases
Bartolomeo Concept

» Bartolomeo platform envisaged to host multiple medium to large size payloads outside Columbus module
 • SpaceX trunk compatible platform, to be installed with one EVA / EVR
 • FRAM-size payloads locations
 • Smaller JEM Airlock compatible payload positions
 • Fully EVR compatible platform maintenance and payload exchange
 • Power and data management system
 • Cooling system

» With Teledyne’s Multiple User System for Earth Sensing (MUSES) Bartolomeo provides
 • Instrument pointing
 • Instrument line of sight stabilization

» End-to-end platform operation by Airbus DS and Teledyne Brown in partnership with ESA and NASA under Space Act Agreement
Payload Customer Requirements

<table>
<thead>
<tr>
<th>Element</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payload mass</td>
<td>up to 250 kg</td>
</tr>
<tr>
<td>Payload volume</td>
<td>up to 1 x 1 x 1 m</td>
</tr>
<tr>
<td>View</td>
<td>• Nadir, Zenith, Limb</td>
</tr>
<tr>
<td></td>
<td>• Pointing and stabilization capability</td>
</tr>
<tr>
<td>Power</td>
<td>100 - 300 W, 500 W, 1 kW</td>
</tr>
<tr>
<td>Data</td>
<td>up to 100 Mbps</td>
</tr>
<tr>
<td>Cooling</td>
<td>up to 1.5 kW, active</td>
</tr>
<tr>
<td>Mission duration</td>
<td>1 to 5 years</td>
</tr>
<tr>
<td>Programmatic</td>
<td>• Access on short notice but without long-term commitment</td>
</tr>
<tr>
<td></td>
<td>• Short mission lead times (1 year is commercial standard for small payloads)</td>
</tr>
<tr>
<td></td>
<td>• Reliable booking of payload slots</td>
</tr>
<tr>
<td></td>
<td>• Low cost payload operation</td>
</tr>
<tr>
<td></td>
<td>• Private commanding and data link between customer and payload</td>
</tr>
<tr>
<td></td>
<td>• Protection of intellectual property and technology</td>
</tr>
</tbody>
</table>
Commercial External Payload Hosting Platforms on the International Space Station for Space Research

Bartolomeo System Concept

- Radiator panel
- ISS Zenith
- EUTAS interface
- FRGF interface
- FRAM compatible payloads
- Flight direction
- Ram trusses
- JEM-EF compatible payloads
- MUSES platform
- JEM-AL compatible payloads
- JEM-EF compatible payloads
- FRGF interface
- EUTAS interface
- ISS Zenith
- Flight direction
- Ram trusses
- JEM-EF compatible payloads
- MUSES platform
- JEM-AL compatible payloads
- FRAM compatible payloads
- ISS Zenith
- EUTAS interface
- FRGF interface
- FRAM compatible payloads
- Flight direction
- Ram trusses
- JEM-EF compatible payloads
- MUSES platform
- JEM-AL compatible payloads
- FRAM compatible payloads

12 November 2015
Bartolomeo System Concept

Commercial External Payload Hosting Platforms on the International Space Station for Space Research
Bartolomeo System Concept
Standard Payload Sizes

12 November 2015

Commercial External Payload Hosting Platforms on the International Space Station for Space Research

JEM-AL compatible

ø250

ø460

920

1605

MUSES compatible

FRAM Standard

1168

864

up to 1245

JEM-EF compatible

1856
Standard Payload Sizes

<table>
<thead>
<tr>
<th>Item</th>
<th>JEM-AL compatible</th>
<th>JEM-EF compatible</th>
<th>FRAM-based</th>
<th>MUSES compatible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept of operations</td>
<td>• Pressurized launch in soft stowage</td>
<td>• Unpressurized upload</td>
<td>• Unpressurized upload</td>
<td>• Pressurized upload</td>
</tr>
<tr>
<td></td>
<td>• Transfer through JEM-AL</td>
<td>• Robotic installation</td>
<td>• Robotic installation</td>
<td>• Transfer through JEM-AL</td>
</tr>
<tr>
<td></td>
<td>• Robotic installation</td>
<td></td>
<td></td>
<td>• Robotic installation</td>
</tr>
<tr>
<td>Maximum dimensions</td>
<td>640 x 830 x 1000 mm</td>
<td>816 x 1037 x 1856 mm</td>
<td>864 x 1168 x 1245 mm</td>
<td>Ø 250 x 920 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ø 460 x 920 mm</td>
</tr>
<tr>
<td>Mass</td>
<td>up to 100 kg</td>
<td>up to 500 kg (TBC)</td>
<td>up to 500 kg</td>
<td>up to 100 kg</td>
</tr>
<tr>
<td>Power</td>
<td>up to 200 W @ 120 V</td>
<td>up to 200 W @ 120 V</td>
<td>up to 1000 W</td>
<td>up to 224 W @ 28 Vdc</td>
</tr>
<tr>
<td></td>
<td>up to 100 W @ 28 V</td>
<td>up to 100 W @ 28 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data link to avionics</td>
<td>up to 100 Mbit/s</td>
<td>up to 100 Mbit/s</td>
<td>up to 100 Mbit/s</td>
<td>up to 100 Mbit/s</td>
</tr>
<tr>
<td>Cooling capability</td>
<td>up to 1.5 kW in total for all payloads</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robotic interface</td>
<td>SPDM micro fixture</td>
<td>SPDM micro fixture</td>
<td>SPDM micro fixture</td>
<td>SPDM micro fixture</td>
</tr>
<tr>
<td>Payload to platform</td>
<td>MDA wedge adapter</td>
<td>MDA wedge adapter</td>
<td>FRAM</td>
<td>MUSES standard interface</td>
</tr>
<tr>
<td>interface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
End-to-end Service Concept

Payload launch

Payload robotic installation

Payload transfer to outside

Payload mission

Payload data processing

1 - 1.5 years

1 - 10 years
Commercial External Payload Hosting Platforms on the International Space Station for Space Research

Contact

Dr. Per Christian Steimle
Project Manager External Payloads Program
ISS Commercial Applications
Airbus Defence and Space, Bremen, Germany
Email: per-christian.steimle@airbus.com
Mobile: +49 151 277 677 74

Ron E. Dunklee
President and CEO
Airbus DS, Space Systems, Inc., Houston, Texas
Email: rdunklee@airbusdshouston.com
Mobile: +1 (281) 414-3617