AMS, probabili tracce di materia oscura

La Collaborazione Alpha Magnetic Spectrometer (AMS) annuncia la pubblicazione del primo risultato di fisica sulla rivista Physical Review Letters. AMS è il più grande e sensibile spettrometro magnetico per lo studio della fisica delle particelle che sia stato mai dispiegato nello spazio. L’Italia ha collaborato alla sua realizzazione con l’Istituto Nazionale di Fisica Nucleare e l’Agenzia Spaziale Italiana. AMS si trova all’esterno della Stazione Spaziale Internazionale (ISS): dalla sua installazione il 19 maggio 2011 fino ad oggi, ha misurato oltre 30 miliardi di raggi cosmici aventi energie fino a migliaia di miliardi di elettronvolt, grazie ad una strumentazione basata su un magnete permanente equipaggiato da una serie di rivelatori di particelle di precisione in grado di identificare i raggi cosmici provenienti dalle zone più remote dello spazio che lo attraversano. Nel corso della sua missione di lunga durata sulla ISS, AMS registrerà 16 miliardi di raggi cosmici ogni anno, trasmettendoli a terra per l’analisi dati a cura della Collaborazione AMS.
Quelli di oggi sono i primi risultati di fisica tra molti che seguiranno.

Nei primi 18 mesi di operazioni nello spazio, dal 19 maggio 2011 al 10 dicembre 2012, AMS ha raccolto e analizzato 25 miliardi raggi cosmici primari. Tra questi, 6,8 milioni di eventi, il campione statistico più grande mai raccolto, sono stati identificati in modo inequivocabile come elettroni e la loro controparte di antimateria, i positroni. Questi 6,8 milioni di particelle, registrate nell’intervallo di energia compreso tra 0,5 e 350 GeV, sono alla base della misura di precisione riportata in questo articolo.
Elettroni e positroni sono identificati e selezionati rispetto al fondo rappresentato dai numerosissimi protoni grazie alle misure accurate e ridondanti ottenute dai vari strumenti che compongono AMS. I positroni, la componente più rara, sono chiaramente identificati grazie alla capacità di AMS di ridurre di un milione di volte il fondo di protoni. Al momento attuale, il numero totale di positroni identificati da AMS, oltre 400.000, è il più grande campione di particelle di antimateria di alta energia misurate direttamente nello spazio.
I risultati dell’articolo possono essere riassunti come segue:
– AMS ha misurato la frazione di positroni (rapporto tra il flusso di positroni al flusso combinato di positroni ed elettroni) nell’intervallo di energia 0,5-350 GeV;
– la frazione di positroni diminuisce al crescere dell’ energia tra 0,5 e 10 GeV;
– la frazione di positroni aumenta invece costantemente tra il 10 GeV e ~ 250 GeV;
– la pendenza (tasso di crescita) della frazione di positroni cala però di dieci volte tra 20 e 250 GeV;
– ad energie superiori a 250 GeV lo spettro sembra appiattirsi: per studiarne il comportamento al di sopra di 250 GeV è però necessario aumentare ulteriormente la statistica. I dati riportati rappresentano circa l’ 8% del totale di eventi che AMS prevede di raccogliere nel corso della sua missione;
– lo spettro della frazione di positroni non presenta nessuna struttura né in funzione dell’ energia, né del tempo;
– la frazione di positroni non mostra anisotropia angolare, indicazione del fatto che i positroni di alta energia non provengono da una direzione preferenziale dello spazio.

Nel loro complesso queste osservazioni indicano la presenza di un fenomeno dovuto a nuova fisica.
La forma esatta dello spettro, una volta che sarà esteso a energie più alte, potrà dire se questo andamento è dovuto alla collisione di particelle di materia oscura o alla presenza di pulsar nella galassia. La grande precisione dei risultati ottenuti con i dati dei primi 18 mesi suggerisce che AMS potrà affrontare e risolvere questo problema con in dati che verranno raccolti in futuro.
Negli ultimi due decenni c’è stato molto interesse relativamente alla frazione di positroni nei raggi cosmici primari, sia da parte dei fisici delle particelle che degli astrofisici. Il motivo alla base di questo interesse è il fatto che misurando il rapporto tra positroni ed elettroni e identificando un eventuale comportamento anomalo dello spettro di energia di questa quantità, si può giungere ad una migliore comprensione dell’origine della materia oscura o della presenza di altri nuovi fenomeni fisici.
Il primo risultato di AMS è stato ottenuto confrontando diversi modelli fenomenologici, uno dei quali è descritto nell’articolo. Questo modello comprende una componente diffusa di elettroni e positroni, prevista da meccanismi tradizionali, oltre ad una componente dovuta ad una nuova sorgente di elettroni e positroni. Esso si adatta sorprendentemente bene ai dati AMS. Questo accordo tra i dati ed il modello indica che lo spettro della frazione di positroni è compatibile con un flusso di elettroni e un flusso di positroni ciascuno dei quali è la somma del relativo spettro diffuso e di una singola fonte comune di alta energia. In altre parole, una parte significativa degli elettroni e dei positroni di alta energia provengono da una fonte comune la cui origine è sconosciuta.
AMS è un sofisticato spettrometro magnetico in grado di esplorare nuova fisica grazie alla sua precisione di misura, alla quantità di dati che è in grado di raccogliere, all’ intervallo di energie che può esplorare, alla capacità di identificare con precisione le particelle elementari e i diversi tipi di nuclei e alla lunga durata della sua missione nello spazio. La precisione di AMS e l’alta statistica raccolta in questi 18 mesi, permette di distinguere nettamente l’andamento in funzione dell’ energia della frazione di positroni da quella riportata dagli esperimenti precedenti.
Nel corso del periodo operativo della Stazione Spaziale Internazionale si prevede di raccogliere con AMS centinaia di miliardi di raggi cosmici. Il corrispondente volume dei dati raccolti richiederà un grandissimo sforzo di analisi. I dati relativi ad ogni particella raccolta sono ricostruiti meticolosamente, calibrati e archiviati prima di essere sottoposti ad analisi da parte di gruppi indipendenti di fisici di AMS, in modo da garantire la massima affidabilità e precisione dei risultati di fisica.

La prima pubblicazione dell’esperimento AMS rappresenta una pietra miliare per la Collaborazione internazionale AMS. Centinaia di scienziati, ingegneri, tecnici e studenti provenienti da tutto il mondo hanno lavorato insieme per oltre 18 anni per fare di AMS una realtà. La Collaborazione comprende 16 paesi in Europa, Asia e Nord America (Finlandia, Francia, Germania, Italia, Paesi Bassi, Portogallo, Spagna, Svizzera, Romania, Russia, Turchia, Cina, Corea, Taiwan, Messico e Stati Uniti) sotto guida del premio Nobel Samuel Ting, del MIT. La Collaborazione AMS opera in stretto contatto con l’eccellente team della NASA dedicato al progetto AMS presso il Johnson Space Center, collaborazione che si è estesa per tutta la durata del progetto.
L’Italia ha fornito un importante contributo alla costruzione e alle operazioni in volo del rivelatore nonché all’ analisi dei dati, sotto la guida del Professor Roberto Battiston, deputy spokesperson di AMS, dell’ Università e INFN-TIFPA, Trento. La partecipazione dell’Italia è stata sostenuta dall’INFN e dall’ASI e ha visto il coinvolgimento delle Università e delle Sezioni INFN di Bologna, Milano Bicocca, Perugia, Pisa, Roma “Sapienza” e Trento in collaborazione con le industrie nazionali (CGS, CAEN, G&A Engineering, FBK). Il contributo alla realizzazione della strumentazione spaziale ha riguardato il sistema di Tempo di Volo e di Anelli Cerenkov (Bologna), il Tracciatore al Silicio (Perugia, Trento), il Calorimetro Elettromagnetico (Pisa), il rivelatore a Radiazione di Transizione (Roma), nonché il segmento a terra dei dati (Milano Bicocca).
AMS è un esperimento di fisica delle particelle sulla ISS, sponsorizzato dal Dipartimento dell’ Energia (DoE) nel quadro dell’ accordo di collaborazione tra DoE e NASA. AMS è stato costruito presso le università e gli istituti di ricerca di tutto il mondo e integrato presso l’Organizzazione Europea per la Ricerca Nucleare, CERN, Ginevra, Svizzera. E’ stato trasportato al Kennedy Space Center nell’ agosto 2010 a bordo di una speciale cargo C-5M dell’ Air Mobility Command dell’ Air Force. AMS è stato lanciato dalla NASA verso la ISS come payload principale a bordo della missione finale dello Space Shuttle Endeavour (STS-134), il 16 maggio 2011. L’equipaggio della missione STS-134, Greg Johnson, Mike Fincke, Greg Chamitoff, Drew Feustel, Roberto Vittori sotto il comando di Mark Kelly, ha installato con successo AMS come strumento esterno sulla ISS, come parte dell’ US National Laboratory, il 19 maggio 2011. Una volta installato, AMS è stato acceso e ha subito iniziato a misurare raggi cosmici primari nello spazio, trasmettendoli al Payload AMS Operations Control Center (POCC). Il POCC si trova al CERN, Ginevra, Svizzera.
Una volta acceso AMS, il primo compito della collaborazione AMS è stato quello di assicurare che tutti gli strumenti e sistemi di bordo funzionassero come previsto e verificato a terra. Il rivelatore AMS, con le sue ridondanze multiple, ha dimostrato di operare perfettamente nello spazio. Nel corso degli ultimi 22 mesi della missione, i collaboratori AMS hanno acquisito una preziosa esperienza operativa nella gestione di uno spettrometro di precisione nello spazio e nel controllare gli effetti delle condizioni estreme dell’ambiente a cui è esposto AMS nella sua orbita di 90 minuti intorno alla Terra. Si tratta di condizioni molto diverse sia da quelle degli esperimenti di fisica delle particelle agli acceleratori a terra sia di quelle dei satelliti dedicati che orbitano indipendentemente dalla ISS. Gli effetti includono le variazioni termiche causate dagli effetti solari e dal continuo ri-posizionamento dei radiatori e dei pannelli solari della ISS. Gli operatori che controllano AMS trasmettono periodicamente gli aggiornamenti software dal POCC AMS al CERN ai computer di AMS sulla ISS, al fine di mantenere aggiornato regolarmente il software e lo stato dell’ hardware sulla ISS.

Grazie alla grande quantità di raggi cosmici primari misurati da AMS, la Collaborazione potrà anche esplorare altri importanti temi di fisica quali:
– misure di precisione del rapporto boro/carbonio;
– misura dell’abbondanza relativa dei vari nuclei;
– misura dell’eventuale presenza di nuclei di antimateria;
– misure di precisione del flusso delle varie particelle che compongono i raggi cosmici come elio, protoni e fotoni;
– ricerca di nuova fisica e di nuovi fenomeni astrofisici, come la presenza di particelle di materia “strana”.

La Collaborazione AMS fornirà nuove ed accurate informazioni man mano che la missione AMS continuerà ad indagare nuovi fenomeni fisici nel cosmo durante il periodo di vita della Stazione Spaziale Internazionale.

Fonte: ASI

  Questo articolo è © 2006-2024 dell'Associazione ISAA, ove non diversamente indicato. Vedi le condizioni di licenza. La nostra licenza non si applica agli eventuali contenuti di terze parti presenti in questo articolo, che rimangono soggetti alle condizioni del rispettivo detentore dei diritti.

Commenti

Discutiamone su ForumAstronautico.it

Alberto Zampieron

Appassionato di spazio da sempre e laureato in ingegneria aerospaziale al Politecnico di Torino, è stato socio fondatore di ISAA. Collabora con Astronautinews sin dalla fondazione e attualmente coordina le attività fra gli articolisti.